Iwscff-2015 354832 Nonlinear Attitude Control of Spacecraft with a Captured Asteroid
نویسندگان
چکیده
One of the main control challenges of National Aeronautics and Space Administration’s proposed Asteroid Redirect Mission (ARM) is to stabilize and control the attitude of the spacecraft-asteroid combination in the presence of large uncertainty in the physical model of a captured asteroid. We present a new robust nonlinear tracking control law that guarantees global exponential convergence of the system’s attitude trajectory to the desired attitude trajectory. In the presence of modeling errors and disturbances, this control law is finite-gain Lp stable and input-to-state stable. We also present a few extensions of this control law, such as exponential tracking control on SO(3) and integral control, and show its relation to the well-known tracking control law for Euler-Lagrangian systems. We show that the resultant disturbance torques for control laws that use feed-forward cancellation is comparable to the maximum control torque of the conceptual ARM spacecraft and such control laws are therefore not suitable. We then numerically compare the performance of multiple viable attitude control laws, including the robust nonlinear tracking control law, nonlinear adaptive control, and derivative plus proportional-derivative linear control. We conclude that under very small modeling uncertainties, which can be achieved using online system identification, the robust nonlinear tracking control law that guarantees globally exponential convergence to the fuel-optimal reference trajectory is the best strategy as it consumes the least amount of fuel. On the other hand, in the presence of large modeling uncertainties and actuator saturations, a simple derivative plus proportional-derivative (D+PD) control law is effective, and the performance can be further improved by using the proposed nonlinear tracking control law that tracks a “D+PD”-control-based desired attitude trajectory. We conclude this paper with specific design guidelines for the ARM spacecraft for efficiently stabilizing a tumbling asteroid and spacecraft combination.
منابع مشابه
Nonlinear Attitude Control of Spacecraft with a Large Captured Object
This paper presents an attitude control strategy and a newnonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feedforward cancellation are not suitable because they exhibit a ...
متن کاملAttitude Control and Stabilization of Spacecraft with a Captured Asteroid
National Aeronautics and Space Administration’s Asteroid Redirect Mission (ARM) aims to capture a Near Earth Orbit (NEO) asteroid or a piece of a large asteroid and transport it to the Earth–Moon system. In this paper, we provide a detailed analysis of one of the main control challenges for the first ARM mission concept, namely despinning and three-axis stabilizing the asteroid and spacecraft c...
متن کاملEarth’s Magnetic Field for Spacecraft Attitude Control Applications (TECHNICAL NOTE)
In this paper the earth’s magnetic field is simulated precisely while the intensity and direction of the field are verified with one of the standard references for selected points on the earth and the results are compared with some low-order models. In another simulation, the complete model is compared with a common approximate model. The magnetic field in orbital frame is described and to empl...
متن کاملRobust Attitude Control of Spacecraft Simulator with External Disturbances
The spacecraft simulator robust control through H∞-based linear matrix inequality (LMI) and robust adaptive method is implemented. The spacecraft attitude control subsystem simulator consists of a platform, an air-bearing and a set of four reaction wheels. This set up provides a free real-time three degree of freedom rotation. Spacecraft simulators are applied in upgrading and checking the c...
متن کاملActive Vibration Suppression of a Nonlinear Flexible Spacecraft
In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015